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Overview Annexes B “Creep, damage and transformations”  
 
B.1.Introduction 
This publication is part of compilation of work of the author to a total rigorous theory, 

containing the latest developments with goal of a thesis and book. The appended articles are 

mostly given in full as acknowledgment for the original journal publication.  

The developed exact theory is given in the appended 5 publications denoted by B, thus:  

vdPut B(1989a), B(1989b), B(2005), B(2010) and B(2011). Other important derivations and 

applications are mentioned below and in these 5 publications. The theory in all appended 

publications was derived by T.A.C.M. van der Put.  

The concerning empirical models, which traditionally are based on linear viscoelasticity, thus 

on dilute solutions models, are wrongly applied to the highly cross-linked and crystalline 

wood material. The lack of correlation also made it necessary to derive new theory of e.g. 

nucleation, B(2011) and glass transition B(2010) and to discuss transformations B(2005) in 

the light of deformation kinetics theory. The draft proposal for RILEM, to apply the wrong 

and impossible classical nucleation equation of solidification (needing infinite energy to 

obtain equilibrium) and to apply this as basic equation for all transformations (1
st
 and 2

nd
 

order) and even for all time dependent behavior (like creep) is absurd (see B(2005)) and 

needed to be corrected by the derivation of the right exact theory, to be able to explain and 

predict measurements with sufficient calculable reliability. The, in general applied linear 

viscoelasticity does not exist and only is theoretically possible as limit behavior for very short 

molecules and thus surely cannot exist in structural materials like wood. The conclusions of 

RILEM T.C. 112, based on linear behavior, thus are invalid and dangerous because long-term 

extrapolations of time (and stress) dependent strength behavior then are totally wrong. 

Strength and time and temperature dependent behavior of materials can only be explained by 

the physical and chemical processes, thus by statistical mechanics (Boltzmann statistics) and 

reaction kinetics, and as shown, by the, in vdPut B(1989a) developed limit analysis  

equilibrium theory of deformation kinetics, aspects as diffusion and self-diffusion (creep), 

power law, reaction order, damage, aging, annealing, spectra, transformations, as nucleation, 

glass transition, and decomposition, rubber behavior, diffusion, etc., are for all processes 

explained by the same constitutive equation. The consequence is that the contradictory 

phenomenological models as the free volume model of glass-transition, the instability model 

of nucleation and the extrapolated flexible chain model, with non-existent linear viscoelastic 

relaxation spectra for rubber behavior and creep of materials, etc., have to be rejected to 

make reliable, (thus exact) prediction of time dependent behavior possible. Thus as 

consequence, time dependent behavior of wood, timber and notched wood is non-linear and 

the processes follow the molecular deformation kinetics equations with a correlation close to 

one, for all tests on the same specimen, only determined by the measuring precision of the 

testing equipment, (showing thus the molecular large number statistics). The variability 

occurs among different wood specimens. Every piece of wood thus is significantly different 

from the others and is an unique giant molecule. The parameters, as concentration, activation 

energy and volume, of the processes can (outer direct measurements) e.g. be found by creep, 

relaxation, recovery, long duration and complex loading-history tests at different 

temperatures, loading rates and moisture contents, measuring response and hysteresis and 

damage, by the decrease of the modulus of elasticity, etc.  

Dominating during ramp loading are the viscoelastic-plastic processes. The main viscoelastic 

process (of side group readjustment by cooperative hydrogen bond breaking) is coupled to a 

damage process with a long delay time (and a very low concentration of the initial flow-unit 

density), which shows irreversible strain at an activation energy which is high enough for 

primary bond breaking. Regarding the response, these coupled processes show a constant 
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activation volume parameter, independent of initial stress and temperature and thus show, 

outer the time-temperature equivalence, also a time stress equivalence, what means that the 

relaxation time decreases with increasing stress and increases with decreasing stress, what 

explains, in the last case, the quasi permanent deformation at unloading, which only can be 

recovered by heating and moistening. The consequence of the decreasing relaxation time with 

stress increase is that the primary bond-breaking process, thus fracture, only is noticeable, 

within the time-scale of ramp-loading, close to the top of the loading curve. This explains that 

any lower bend off of the loading curve of the test is not due to fracture, and is not correlated 

to fracture (as also found empirically).  

The following examples, only can be explained or predicted by deformation kinetics theory. 

The elastic full plastic description of limit analysis gives the same stress – strain relations as a 

parallel system of non-linear Maxwell elements (a spring with dashpot on top, see Fig. B-1). 

 
Fig. B-1.Yield drop, according to: 

 v

1L K

 
    or: v

1

L
K

 
    

 
  or: v

1 1

L d
1

L K L K d

   
     

 
 or with c  :  

1 1 1 1
v 0

1 1

d K K K K
A'T B' sinh 1 C C

d L c L c L K L K

        
              

     
  (B-0) 

The dashed unloading curve, in Fig. B-1, has nothing to do with softening according to the 

cohesive zone model. The impossible assumption of a negative E-modulus and negative 

dissipation is not needed. Softening and yield drop is visible impossible in a dead load test 

and in a constant loading rate test, (see Fig. B-2-b). In the constant strain rate test, softening 

is a matter of unloading (outside the fracture plane) when the rate of the flow process 

surmounts the rate of loading. This all follows for a positive spring constant and positive non-

linear dissipation from limit analysis, by the 

numerical solution of the Eq.(B-0) at Fig. B-1. 

 

 

Fig. B-2. Yield behavior data (showing the 

work hardening of the involved processes)  

(a) constant strain rate -  

(b) constant loading rate test 

 

 

At the first top of the loading curve of Fig. B-

2a, is the rate of the crosshead of the test machine equal to the non-linear rate of flow. Then 

unloading occurs, because the speed of flow is higher than the crosshead speed at that stress. 

Next, again equal speed is possible at the lower stress as given in Fig. B-2-a. This has nothing 
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to do with assumed impossible constitutive softening of the cohesive zone model. In B(2010) 

is shown that also for thermal softening as e.g. by glass transition, positive stiffness and 

positive dissipation is involved in the process.  

 

B.2. Discussion of annexes B about creep, damage and transformations 
As applies for all materials, time and temperature dependent behavior of wood is non-linear 

and has to be described by the theory of molecular deformation kinetics. The basic concept of 

this theory is to regard creep and plastic flow as a matter of molecular bond breaking and 

bond reformation in a shifted position, what is the same as to state that flow is the result of a 

chemical reaction like isomerization, (changing the bond structure but not the composition). 

Thus creep follows the chemical reaction equation of isomerization. This also applies for 

damage increase, when not all bonds reform. This reaction kinetics theory is always partly 

phenomenological, but was for the first time extended to a rigorous theory in B(1989a) by 

applying the extremum principle of limit analysis. The lower bound equilibrium method 

provides a rigorous prediction and explanation of time dependent behavior and of the 

concerning phenomenological laws. The mathematical derivation of this kinetic damage and 

plasticity theory is solely based on the reaction rate equations of the bond-breaking and bond-

reformation processes at the deformation sites (i.e. spaces where the molecules may move 

into) due to the local stresses in the elastic material around these sites, according to the 

elastic-full plastic schematization of limit analysis. By expressing the concentration and work 

terms of the rate equation in the number and dimensions of the flow units, accounting for the 

thermodynamics of the activation energy changes, the expressions for the strain rate, fracture, 

hardening and delay time are directly derived without any assumptions. The reaction rate is 

shown in B(2005) to be of the first order and the activation energy and plastic work terms are 

constant and/or linearly dependent on temperature, moisture content and stress. The 

activation energy and volume provide information on the involved type of bonds and on the 

dimensions of the flow units. To obtain simplifications, the derivation was extended, based 

on series expansion of the potential energy curve, leading to a parallel acting system of 

symmetrical consecutive barriers with the same deformation rate of all units. 

 
Fig. B-3. Series expansion of the activation energy barrier E’.  

 

Because a system of the same symmetrical consecutive barriers act as one symmetrical 

thermally neutral barrier (thus with constant enthalpy and entropy), the total process is 

equivalent to a parallel system of simple, processes, in the form of Eq.(B-1). This derivation 

provided a proof of the generalized flow theory in B(1989a), showing that the hypotheses, on 

which that theory was based, are consequences of this series expansion. Because the 

relaxation times of these parallel processes are far apart from each other, only one or two 

processes act and can be measured, at the same time.  

The derivation of the theory is given in B(1989), Section 3 and 4  

In the reaction rate equation for symmetrical energy barrier expansions: 
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are the molecular variables replaced by the engineering values.  



 4 

The work W, by the ultimate plastic stress f on the flow unit, with area A, moving over the 

energy barrier over a distance  , is (see section 3.5 of B(1989a)): 

/W fA N     (B-2) 

The concentration 1/NA   , where N is the number of sites per unit area, and 1 , the 

length of the flow segment or the distance between flow points. The part of the engineering 

stress per unit area  , acting on the sites, follows from equilibrium: 1 1 NfA    . Thus the 

reaction equation becomes: 
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In this equation, A and 1/ 1  are mathematically the same variables. Thus A can be regarded 

constant and scratched from the equation because if there is any change possible, this will 

accounted by a change of 1 . Also 1/N and   are the same variables because the equation 

can be written:  
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and   can be regarded constant. This equation becomes for high stresses near failure:  

1 1

exp
r

d

dt N Nt NkT

  

 

 
  

  
  (B-5) 

For a high, maximal concentration of flow units, the pre-exponential factor can be regarded 

to change hardly or does not change as extremum principle, and the equation becomes: 
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The solution of this differential equation is: 
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Fig. B-4. Stress and temperature dependence of the lifetime of materials. 
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and because the lifetime should follow Eq.(B-8), according to Fig. B-4:  
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1 0 100.5N N    (B-9) 

This relation, Eq.(B-9), is applied by the derivation of the small crack merging mechanism of 

C(2011b), Section 3.6, which explains the apparent lower fracture energy for softening 

behavior of high loaded fracture planes. The initial small crack density is maximal with a 

crack distance 1 , which is equal to the crack length. Then, as first step, two adjacent cracks 

merge by propagating over the distance 1  and the number of cracks is halved. Thus: 1 10   

is constant and 00.5N N . The same applies for all next steps. The distance between two 

propagating adjacent crack tips is always 1 =2c and crack extension is always over a distance 

1 , halving all together the intact fracture surface.  

 

 Principle of crack merging 

 

It thus is shown that the crack merging mechanism of C(2011b), (§ 3.6) satisfies Eq.(B-9).   

Eq.(B-8) can be written as a normalized creep to failure strength (creep strength divided by 

the short - term strength):  
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which is Eq.(4.5.4) of B(1989a). Eq.(B-10) is one line for different wood species, moisture 

contents, stress states (bending, shear, compression etc.) and types of loading. This may 

indicate that cellulose is determining, because the structure of cellulose in the same for all  

 
Fig. B-5. or: Fig. 4.5.2. of (1989a B) Activation volume (compression // test) 
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species. Thus /sn NkT   has to be constant, independent of the flow unit density, stress,  

temperature and moisture content, what explains the time-temperature and the time stress 

equivalence. As slope of the logarithmic creep-to-failure law eq.(B-10), is n = 38, when the 

line is scaled to the ~ 1 sec. strength, but n = 34 when scaled to the 5 min. strength. The value 

of n, following from the WLF-equation (Williams-Landel-Ferry is WLF) for glass transition, 

B(2010), is: n = 40, equivalent to a scaling to the shortest duration strength. Thus n is 

essentially a structure constant and is as such unaffected by moisture content, initial stress 

and temperature. The in B(1989a), section 6.3, given preliminary explanation of the WLF-

equation for the time-temperature equivalence above glass-rubber transition, is corrected and 

extended by a rigorous derivation, leading, to an exact theory of glass transition in B(2010).  

Although n is constant, this does not apply for the activation volume V = / N  which can be 

strongly linearly dependent of the moisture content and temperature (see Fig. B-5) (and thus 

the inverse of the strength has the same dependence). Based on this form of the activation 

energy, the experimental creep to failure tests at different temperatures and moisture contents 

could be explained as well as the straight line of the strength on log-time scale for dry wood 

as the curved line for saturated wood.as given by Fig. 4.5.1. of B(1989a). Saturated wood 

shows an enthalpy of about 36 kcal/mole above a transition temperature of - 8 
0
C and about 

30 kcal/mole below this transition temperature. Of course, dry wood doesn't show this 

transition to lamination of theS2-layer.  

The value of n is probably the result of two main processes. Reported are values of n ≈ 62, 

for controlled crack growth tests, to n ≈ 65, for constant strain rate tests, indicating 2 adjacent 

cellobiose units as fracture site and n ≈ 30 in constant load, creep to failure tests, based on 1 

cellobiose unit of the first dominating process. 

Analyzing the creep values at not too high stress , the existence of two parallel barriers was 

clearly demonstrated. The quick process had a high internal stress (forward activation only) 

and an activation energy of approximately 50 kcal/mole which is high enough for primary C-

O-bond or C-C-bond rupture. The fact that this process is quick, despite the high activation 

energy, shows that the internal stress is high, as occurs at initial crack extension to its 

equilibrium length at that stress, providing the sites for following crack extension. However, 

this primary bond breaking process is of minor importance in the ramp loading tests of 

fracture mechanics. Comparable (high enthalpy) processes only dominate at high stress 

levels, e.g. in controlled crack growth tests. The slower process was approximately 

symmetrical and had an activation energy of about 21 kcal/mole. The quick process, that was 

determining in the first stage of the loading may probably be associated with the first 

determining crack propagation process with n ≈ 62 and the second process may be associated 

with the slower process with n≈ 30. The activation energy of this slow process is comparable 

with other values mentioned in literature where from creep tests at different temperatures for 

bending: H' = 22 kcal/mole to 24.4 kcal/mole, depending on the temperature range, have been 

found. From normal-to-grain relaxation tests 23 kcal/mole was reported for wet beech wood. 

This energy can be regarded to be the energy of cooperative hydrogen bond breaking.  

Based upon these results, also an explanation of the different power models (of the stress and 

of the time) is possible, giving the physical meaning of the applied exponents and constants. 

It further is shown that the Andrade-type power equation is equivalent to the theoretical 

logarithmic creep behavior. The inverse of the power parameter of e.g. the Andrade or 

Clouser equations is equal to the external work parameter of the activation energy 

( / /n V RT NRT     ) and has same meaning as the exponent n of the empirical 

power law equation for the creep rate and the exponent of the Forintek damage model. 

Further is also 1/n the slope of the normalized logarithmic creep and relaxation lines and of 

the logarithmic time to failure law of the creep strength or long duration strength. The value 

of n is e.g. in the Clouser equation 33n  . In the Forintek equation is n = 34.  
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It is further shown in B(1989a), that a relaxation or retardation spectrum does not exist. By 

the special property of the activation volume parameter / c    (constant), is a single 

nonlinear process sufficient to explain the measured, broad, nearly flat mechanical relaxation 

spectra of glasses and crystalline polymers B(2005) and an outline of the whole apparent 

relaxation spectrum of wood can be explained by two processes instead of the assumed 

infinite number of linear processes. Also the loss-spectrum by forced vibrations and the 

fatigue behavior can be explained by one non-linear process and the behavior at long term 

loading and at fatigue loading is coupled by the same mechanism. Thus it will be possible to 

use fatigue tests in order to predict the long term strength. 

The solutions of the model equations for transient processes are given for different loading 

histories and it is shown that the model is able to explain the applied logarithmic and power 

relations of the phenomenological laws but that the theory, (as exact theory) has to be applied 

to be able to guarantee a right calculable reliability.  

Several processes are acting in wood at loading. For the main damage process the stress 

independent part of the activation enthalpy and entropy are constant, independent of the 

temperature and the moisture content. The work term n of this process is about 30 to 40, 

depending on the scaling strength ( 2 0( ) / (k ) / k Kn V T N T     ). The activation 

enthalpy is about 36 kcal/mol. Probably this is the result of a cooperative reaction of a 

primary and a side bond rupture process. The primary bond breaking process (with n   60) 

dominates at controlled crack growth tests.  

The features of the main creep process are different. The work term n or 0  is constant 

independent of the temperature and highest initial strain 0  ever, at constant moisture 

content. The enthalpy is about Hꞌ = 24 kcal/mol and n is about 36 for dry wood. The flow unit 

density N is proportional to the moisture content (and is constant at zero content). Coupled to 

this mechanism is another mechanism with a lower value of 0  and a long delay time (of 

flow unit multiplication) that occurs after some critical viscoelastic strain (0.4%) of the first 

mechanism and this first mechanism creates the flow units for the second mechanism. The 

additional creep strain of this second mechanism is irreversible. The coupling follows from 

the same time-temperature and time stress equivalence. Besides these dominating 

mechanisms, that are related to the cellulose and hemicellulose, there is a small mechanism 

with a low value of   (n = 1) and a short relaxation time that is only noticeable at very high 

loading rates. For dense species with a high lignin content, a flow unit multiplication 

mechanism dominates with a stress independent relaxation time. It can be deduced that for 

this mechanism v  and thus 2  is constant. Thus the density of the flow units is 

proportional to the plastic strain. The 

constancy of v  applies only for 

constant temperature and moisture 

content. Probably v1/  is linear 

dependent on   and T. This process 

causes rotation of the relaxation lines at 

short times in proportion of the strain. 

When this process is finished (  mt t ) , 

it can be seen from eq.(5.5.10) of 

B(1989a), that the relaxation lines for 

longer times (  mt t ), are shifted  

Fig. B-6 Sudden cooling contraction of glucose  vertically according to:  

        (test-points and theory: Eq. (33)) 1 2 01 02/ /    .  
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Also possible is a mechanism with constant   and a reliable creep model has to contain all of 

these processes as parallel acting mechanisms.  

A special interaction of 2 processes gives the explanation of the mechano-sorptive effect in 

B(1989b). Absorption of water in wood causes swelling up to a moisture content of about 

28%. Swelling of the secondary wall is much greater than swelling of the middle lamella. 

With respect to the stress-less volume increase, there thus are layers with slip at desorption 

and layers with slip at adsorption in the mechano-sorptive model. The high restraints for 

swelling and shrinkage will cause "flow" in the gel-like matrix. This flow is directed if a 

specimen is maintained under stress during a change in moisture content. The moisture 

movement through the wood involves breaking of stressed hydrogen bonds and reformation 

of these bonds in a shifted position by, at the same time, swelling and shrinking of adjacent 

layers, causing, as explained by the model, the large creep deformation at desorption in the 

first moisture cycle. At absorption there is a partial recovery of this deformation by the 

reversed behavior.  

 

B.2. Transformations of wood and wood-like polymers 
In B(2005), the applied, untenable phenomenological models of transformations are 

discussed and replaced by the exact theory of reaction kinetics, to make a real explanation 

and prediction of behavior possible. This leads to a new theory of solidification, nucleation, 

glass transition, annealing, diffusion, Rouse and Zimm and other spectra, power law, reaction 

order, aging and decomposition, etc. Parts of this theory are published in different articles, as  

1) “Theoretical derivation of the WLF- and annealing equations” B(2010), where, based on 

the deformation kinetics approach and the special property the activation volume term, the 

theoretical derivation is given of the empirical WLF-equation of the time–temperature 

equivalence. The same is done for annealing at glass transition. The derivation provides a 

general theory for any loading history and replaces the inconsistent free volume model.  

2) “A new theory of nucleation” B(2011). where the classical nucleation and growth model is 

shown to be impossible. Therefore a new theory is derived, showing that nucleation is just a 

common example of the kinetic theory of transport processes, with a special property of the 

activation volume parameter, following from the equilibrium theory of deformation kinetics.  

The special properties of the activation volume is determining in all processes and need to be 

studied further. For instance is /   constant at forced vibration, showing the number of sites 

N, to be proportional to the frequency time, causing a perfect flat relaxation time spectrum.  

3) The mechano-sorptive effect, discussed in B(1989a), B(1989b) which occurs in wood by 

moisture cycling, can be explained by deformation kinetics, as a bond breaking process of 

secondary bonds, causing internal shifts of adjacent layers with respect to each other, due to 

sorption. It was for the first time possible to describe the mechano-sorptive effect by the 

kinetic theory, and a preliminary indication is given of dominant model parameters when 

external loads produce a tensile or compressive stress in the fibers. The theory predicts that 

for large dimensions of the test specimens, there will be only a small force exchange between 

the layers, and the sorption effect is of minor importance. In any case the theory makes it 

possible to account for it and to design for it.  

It is shown in B(2005), that the wood-polymer shows no first order transformations. 

Examples of first order transformations of wood-material (components) are the changes as: 

melting, crystallization, depolymerization, degradation, dehydration and some types of 

plasticize and hardening. Transformations of wood components mentioned in literature are 

based on highly degraded material. Wood does not follow these transformations of the 

degraded components. Wood is not a heterogeneous composite and will not show 

transformations of the components, but is a homogeneous composite and shows one 
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intermediate transition point as copolymer depending on the composition. For the structural 

use of wood, transformations play no role. At common temperatures, loading levels and 

moisture contents there is no indication of any transformation and there thus also is no aging 

or change of crystallinity, chemical changes, or change of concentration of flow units 

(determining creep etc.) during very long times. Long term loaded wood (Hinoki) of old 

Japanes temples, did show an increase of strength during the first 400 years and then a slow 

decrease during the next 1000 years, due to a process of increase of crystallinity and a slower 

process of decomposition of cellulose.  This follows from a piezoelectric shear modulus that 

shows the same behavior and from the X-ray diffraction patterns being sharper for 350 years 

than for 8 years old wood and being diffuse for 1400 years old wood, indicating the decrease 

of crystallinity although the strength and stiffness still was higher than for 8 years old wood. 

Aging of wood at normal conditions and low stresses thus is extremely slow and the changes 

at common times are not noticeable. If not neglected, a net strength increase, at low or zero 

stresses, could be accounted for of about 1 % in 10 years (during the first 400 years) at 

common temperatures (indicating the common creep value of the activation volume 

parameter of this kinetic process of n = 33). The (degraded) composite wood shows a higher 

crystalline melting point than is mentioned for the components. Dynamic DTA and DSC tests 

did show the endothermic melting peak to be at about 380 
0
C, and is higher crystalline than is 

mentioned for the components, occurring at the high temperatures where also 

depolymerization and degradation occurs (failure of the chain oxygen linkages). 

Decomposition thus is necessary to get “melting” and this “melting”-process can better be 

regarded as a process of endothermic decomposition. Thus first order like transformations of 

wood only occur at high temperatures and have a not noticeable influence on time dependent 

behavior at common temperatures.  

Second order transformations, that may show at the transition temperature, a “step increase” 

of the thermal expansion coefficient, the heat capacity and the compressibility, should e.g. be 

detectable for wood by a fall down of the modulus of elasticity. For a real glass-rubber 

transition, the stiffness (or rigidity) diminishes more than 3 orders (and the strengths more 

than 2 orders). However wood, as highly oriented, cross-linked, filled and crystalline 

composite shows a leather transition and remains elastic (potential-elastic, not rubber-elastic) 

and only may show a reduction of the stiffness of less than one order in the stiff direction.  

Softening (similar to glass transition) of wood is possible at high temperatures and moisture 

contents (m.c.) due to high loading. The influence of m.c. is known from manufacturing 

densified wood. Pressing wood of 26 % m.c. at 26 
0
 C is as easy as pressing wood of 6 % 

m.c. at 160 
0
 C. By the time-stress and time-temperature equivalence, the softening 

temperature of wood is also strongly reduced by high loading.  

A type of a leather-like transformation of wet wood is possible by a cycling load or by a 

cycling m.c. change. This is not a real glass-transition that only depends on its transition 

temperature, but may occur at any temperature and is dependent on the loading level that 

should be above the long-term strength. The transformation is not possible for tension in 

grain direction and at low moisture contents, but is measured in compression and in torsion 

and other loading cases in B(1989a).  

Repeated compressional loading of small clear compression specimens (1x1x2 cm
3
) at a 

stress level above the long-term strength did show, besides the visco-elastic strain, a strong 

increase of the elastic strain. Thus, a strong decrease of the modulus of elasticity. This elastic 

strain may become of higher order with respect to the initial strain, when pure central loading 

of the specimen remains possible in the test. If this is no longer possible, instantaneous 

compressional failure occurs. The applied stress is thus a fatigue load of the repeated central 

loading. The behavior is according to a damage equation or to a structural change equation 

and there is a delay time and an exponential increase of the elastic and viscoelastic strain.  
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An other way to obtain a high elastic strain is given in chapter 8 of B(1989a). Creep and 

relaxation compression tests on small clear specimens at a high stress level, with small 

changing moisture contents, did show, in the delay time before the high elastic state in 

compression, a strong increase of the activation volume and thus a much higher 

compressional creep and already a high elastic state for bending movement of the 

compression specimen. This shows that side bond breaking starts only in certain planes and 

changing moisture content tests should be done in combined bending and compression for 

parameter estimation.  

For wood, the high elastic state is the result of a strength mechanism, decreasing the side 

bonds and it is not a glass transformation, although the deformation is partial recoverable. 

The real glass transformation is discussed in B(2010).  

For the structural use of wood, transformations play no role. At common temperatures, 

loading levels and moisture contents there is no action of any transformation and there thus 

also is no aging effect or change of crystallinity, chemical changes, or change of 

concentration of flow units (determining creep). There also is no indication of second order 

transformations because there is no sudden change on a temperature plot of: the thermal 

expansion coefficient; the heat capacity; the strength and the modulus of elasticity. The only 

process that matters is the damage process at high loading. Stress is the only driving force 

then, because the chemical driving forces are negligible.   

A proof is given B(2005) that the first order reaction always applies for all processes in 

wood. This lowest overall order n = 1, shows that there is one speed determining reaction and 

that there are no mechanisms with intermediate products. Further, the slightly lower value of 

the order than one, at higher concentrations, indicates that series reactions are acting (and not 

concurrent reactions). Based on these results it is possible and convenient to obtain general 

solutions of the often complex reactions of structural changes by a sinus series expansion of 

the potential energy surface (as done and discussed in B(1989a)). Based on the symmetry 

conditions of the orthogonal components there is a not changing, thus steady state, 

intermediate concentration in the successive steps causing a behavior like one elementary 

symmetrical reaction for each component (see B(1989a)).  

New theory, derived in chapter 2 of B(2005), is about: nucleation and heterogeneous 

nucleation, (2.5), with the corrected “Tammann Hesse” equation, (2.6), and the explanation 

of other empirical nucleation equations, (2.5); further, about the general diffusion equation of 

transformations, (2.3); the reaction order, (2.4); the activation volume parameters, (2.5); the 

power law (2.5); and the empirical power law rate equations, (2.8). As shown in 2, the phase 

transformation models of liquid-like materials, with proposed linear viscoelastic behavior 

only may apply for idealized “Newtonian liquids”, and thus certainly cannot apply for a 

glassy and crystalline material like wood. In general, transformations models based on a free 

transport of structural molecules, can not be used for wood because the (infinite) long wood-

polymers only may show structural changes by secondary side bond breaking. Thus for wood 

only models based on the short range displacements are possible that only may give a 

structural change at an interface as a heterogeneous transformation. This diffusion at an 

interface is shown to follow the reaction equation as given in 2.3, and gets the form of the 

monomolecular reaction equation, eq.(2.3.10). For wood, only diffusive transformations are 

possible, because the martensitic transformation will not occur in wood- and wood-products. 

Even when a martensitic configuration may exist in wood, the elementary crystalline fibrils 

in wood of 3 nm are too small to be able to build up high enough internal stresses for that 

transformation. A derivation of a general diffusion equation for all kinds of driving forces, 

eq.(2.3.5), is given in 2.3, showing that Fick’s first and second law are special cases.  

It is shown in 2.4 that only first order reactions may occur in wood. A value of the order of 

one is also measured. The also measured slightly lower value than one indicates that there is 
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another successive reaction. This second reaction can be regarded to be of zero order, 

because of the nearly constant reactant.  

As discussed in 2.5.1, the classical nucleation theory is not right and thus also wrong is, the 

thereupon based “Tammann Hesse”- equation (with its impossible negative driving force and 

the need of infinite energy to obtain equilibrium) that even is proposed to be the basic 

equation for all transformations and even for all time dependent behavior (including creep).  

The nucleation theory derived in 2.5.2, is further extended and corrected in B(2011).  

The “power law” equation is derived in 2.5.3 of B(2005) from first 2 expanded terms of any 

equation. Thus, every equation can be written as power law-equation. By using the power law 

form, it is possible to compare and explain the power value n of eq.(2.5.3.4) of the different 

empirical equations with those of the exact equation, eq.(2.5.3.6), n = 0 to get information 

on this activation volume parameter. It shows e.g. the special form of 0 for nucleation, 

eq.(2.5.3.8) and eq.(2.6.3), etc.  

To study properties as activation energy and volume of possible transformations in materials, 

a study of movement the free spaces (the activated sites) is possible that is the same for self-

diffusion, creep, flow, rupture and transformations as melting. Creep and stress pulse 

experiments show all the possible forms of the activation volume parameter (2.5). Creep tests 

of wood show comparable values as found for other strong structural materials.  

The derivation of the empirical Johnson-Mehl-Avrami equation (see 2.7) shows that this 

equation only applies for the steady state stage of the transformations and thus can not apply 

for cross-linked polymers like wood that cannot show a steady state stage, and the equation 

thus is a meaningless power law equation for wood. Also the other empirical rate equations 

are shown, in 2.8, to be related to this equation and to  apply only for Newtonian materials.  

 

B.3. Replacement of the classical phenomenological ‘Rubber Theory” by  

        the exact equilibrium theory of molecular deformation kinetics 

As shown in B(1989a) and B(2005), the exact equilibrium theory of molecular deformation 

kinetics, explains precisely (correlation ~ 1) all aspects of time dependent behavior like 

creep, damage, transformations, etc. The same constitutive equation with the same molecular 

parameters as e.g. N,   and 1  apply. It thus is necessary that this exact approach replaces 

the still generally applied linear viscoelastic rubber theory equations.  

The rubber theory or theory of isolated flexible molecules applies for steady-state flow 

viscosity and thus not for cross-linked material, which is not able to be randomly coiled and 

have the Gaussian distribution of configurations and thus also cannot behave like entropy 

springs. Chain models thus don’t apply for, and have nothing to do with (always at least 

cross-linked) structural materials, even not above glass transition. Further, long "isolated" 

chains of uncross-linked polymers also don’t behave according to the free chain theory.  

The behavior according to the rubber theory, only approximately applies for very dilute 

Newtonian solutions, where isolated chains of not too short molecules (to make chain 

statistics and coiling possible), and of not too long molecules, (thus of low molecular weight), 

to prevent entanglement coupling. This applies, because rubber theory, is based on the 

Brownian motion of isolated flexible chains at higher temperatures above glass transition, 

thus deals with a very dilute solution where a separated long molecule is surrounded by 

solvent. As model, the motions of segment junctions of the chain are expanded into modes 

(like a vibrating string) and each mode corresponds to a discrete contribution to the spectrum 

H. To keep the series of the contributions to the response convergent, for finite results, an 

early, arbitrary, cut-off of the series is used. Because therefore the influence of short 

relaxation times is not regarded in the model, the theory is not general and only is an analog 

for behavior after long times (or lower frequencies). The theory thus does not deal with 
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higher frequencies and short-range relationships and the prediction of infinite rigidity and 

infinite loss at infinite high frequencies is invalid. Because of the cut-off of the series, to 

obtain a convergent series for finite responses, the Rouse model predicts, for all materials, a 

slope of the logarithmic plot of G’ of 2 and a slope of 1 for the loss modulus G’’. As can be 

seen from the data of all types of polymeric materials, this never applies. Thus, the best  

linear viscoelastic spectrum is not able to explain time dependent behavior. Only at a steep 

descent, thus in the terminal zone of uncross-linked polymers, series expansion of the non-

linear process shows roughly a similar behavior as a spectrum given by such a converging 

series. Zimm introduced hydrodynamic interaction between the moving sub-molecules based 

on the calculation of steady-flow viscosity of dilute solutions. However visco-elastic data of 

e.g. dilute solutions of polystyrene etc., in the range and conditions where the theory should 

apply (e.g. in the terminal zone), don’t show behavior according to the Zimm theory but do 

show behavior close to the Rouse equation, despite the neglect of hydrodynamic interaction 

and internal viscosity  (= intramolecular steric effects) according to the Rouse equation. This 

shows that the Zimm model also is not right as also is explained by the exact kinetic theory.  

It is shown in B(2005) that the determining deformation kinetics equation of the viscoelastic 

behavior at longer times can be expanded into a row that is identical to the row of the Rouse 

equation. A still later cut-off, near equilibrium at very low stress, at the end of the relaxation 

process, gives the Zimm value with the slope of 2/3. The Rouse line spectrum thus is a row-

expansion of one special non-linear process. This explains why there is no restriction of an 

application to only dilute solutions, as is the basis of the chain models. This further explains 

why at zero relaxation, (when there is no relaxation although the specimen is still loaded after 

a relaxation test), the spectrum is not present. Because the "spectrum" only exists as 

expanded terms of one process, it does not exist when this single process is not acting by the 

zero internal stress on the sites at zero relaxation.  

Because for a finite, convergent result, the row according to the Rouse model needs an early 

cut-off of the expanded row, it therefore gives no explanation for the applied row. The 

explanation of the Rouse equation as an expansion of one non-linear deformation kinetics 

process also explains why this line spectrum (that seems physical improbable, but exists as 

terms of the row expansion of the exact equation) gives better results than a continuous 

spectrum (that does not exist). Further, it explains why the theory also can be applied to 

undiluted polymers, using only one friction coefficient for all types of coordinated motions. 

These motions, represented by the separate terms, are in fact the expanded terms of one 

process with one relaxation time, thus one friction coefficient.  

The steeper Zimm slope, occurring at shorter times than theoretical possible, in undiluted 

polymers in stead of in the postulated dilute solutions, certainly can not be explained by the 

Zimm theory because the internal friction is of higher order with respect to a solvent friction. 

As shown in B(2005), this slope is characteristic for the midpoint of glass-transition.  

The ladder networks of Blizard and Marvin are identical with the Rouse theory with the 

dense line spectrum approximated by a continuous spectrum. A thorough study in the past of 

ladder networks with both lumped and distributed parameters, has shown that a continuous 

dynamic modulus function corresponds to a discontinuous relaxation spectrum with discrete 

lines. This confirms again the explanation of the behavior according to a row expansion of 

the deformation kinetics equation.  

Several modifications of the series of the spectrum H (to apply it for cross-linked networks) 

by arbitrary characteristic modes of linked strands and networks (or series of networks) only 

give qualitative descriptions of the behavior at transition, e.g. with square root (Rouse; 

Bueche), linear, and square dependence of J’’ on 



 , all roughly in accordance with the range 

of the measurements of the different types of polymers. None of these models however is 
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able to explain, or to describe, the flat plateau at small times. This only is possible by reaction 

kinetics B(1989a).  

Real quantitative reasonable fits of the whole behavior are not possible by the chain and 

power "models". This is evident because the very long relaxation times can not be explained 

by extrapolation of the model to motions of large groups of strands of large dimensions, 

while physics (reaction kinetics) shows that the behavior is explained by the very local 

movement of small flow units (as side bond breaking and reformation or dislocations 

movements in crystals, etc.).  

After a sufficient long relaxation test, a lower load level can be found of zero relaxation, 

showing no relaxation although the specimen still is loaded. This shows that a single non-

linear process is acting because the internal stress on the sites can be zero at a lower load 

level. A spectrum of relaxation times thus cannot exist.  This non-linear process is acting in a 

wide time interval of many decades (e.g. 5 to 6 decades in "crystalline" materials like metals). 

None of the other methods (chain models, power laws, general functions, etc.), that are based, 

or implicitly based, on the existence of spectra, is able to explain zero relaxation. Mostly one 

or two processes act in concentrated solutions and solids and the rate equation of flow is in its 

simplest form: 

1 2

1 2

. .
arcsinh( / A ) arcsinh( / A ) 

  
 

  (B-11) 

For crystalline materials like metals, steady flow is also due to self-diffusion. Dislocations are 

held up by bad sites (impurities, alloying elements, crystal imperfections, etc), causing stress 

concentration in the neighborhood. This stress is relieved by diffusion of the neighbors of the 

bad site, because the activation heat for creep equals that for self-diffusion.  

Only when no phase- or other transitions are involved, the time-temperature and time-stress 

equivalence may apply, as in the glass-state.  

It thus clearly is shown that linear viscoelastic behavior does not exist for structural materials 

like wood, even not above glass transition.  

 

To study aspects of transformations of wood, as nucleation, glass transition, annealing, etc., it 

is necessary to show that the exact equilibrium theory of deformation kinetics is able to 

explain all phenomena and provide the right, exact equations of the behavior. The first, this is 

discussed for nucleation:  

The classical nucleation and growth model is modified and it is shown that the concept of 

fluctuations, instability and surface energy is not needed and that (as also applies for glass 

transition) nucleation is a common example of the kinetic theory of structural change 

processes, with a special driving force and a special property of the activation volume 

parameter. This last follows from explanation of diffusion tests. This new nucleation equation 

leads to a new vision on heterogeneous nucleation, applicable to solids. The equation also 

provides, as necessary, the theoretical equation of the thus far empirical C-curves of the time-

temperature-transformation diagrams (TTT-diagrams). 

The derivation of the equilibrium concentration of the embryos, depending on size, is given, 

from which, information is obtained on the nucleation mechanism and on the driving force 

for embryo formation. The classical distinction between volume free energy and temperature 

independent surface free energy of the embryo is shown to be questionable. In Section 4 of 

B(2011), the derivation of heterogeneous nucleation is given, which generally applies, also 

for solids. The derivation is based on continuity condition of the growth rate, replacing the 

classical model of surface energy, in the form of nonexistent surface stresses in solids. In 

Appendix 3, based on diffusion tests, the theoretical explanation of the different empirical 

equations by their different activation volume parameters is given, based on the derivation of 
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the empirical power law equation in Appendix 2. 

Herewith the special form of the activation volume 

term of the driving force of nucleation is found as 

applied in Section 5. It is shown in this Section 5, that 

the special expression of the activation volume of the 

basic rate equation explains the data and nucleation 

behavior (as well for homogeneous as for 

heterogeneous nucleation by one equation). As 

discussed in Section 6, this rate equation shows the 

well-known increase of the rate at the increase of 

undercooling up to a maximum value and then a 

decrease of the rate at larger undercooling steps giving 

thus a theoretical explanation of the C-curves of the 

time-temperature-transformation diagrams (TTT-

diagrams). 

Fig. B-7. Nucleation and growth rate Regarding nucleation the following can be concluded: 

            of ice crystals  The classical nucleation theory is shown to be 

 questionable e.g. by the apparent infinite energy and 

infinite fluctuation dimensions as equilibrium requirement. Because embryo volume- and 

surface formation is identically coupled, the defined classical surface free energy and volume 

free energy must have the same temperature dependence and the assumed temperature 

independent surface energy can not exist. It is shown by the general derivation of sequential 

growth increase that this free energy distinction is superfluous and the surface energy term 

thus should be omitted. This is confirmed in Section 4.2 of B(2011) by the proof that the 

separate influence ofsurface energy in the form of surface stresses to explain heterogeneous 

nucleation is not needed because the assumed equilibrium of 

surface stresses has to be 

replaced by equilibrium of rates, thus by continuity 

conditions, to explain heterogeneous nucleation. These 

continuity conditions are automatically fulfilled by the 

derivative of the volume in the sequential growth rate 

equation.  

Based on sequential growth conditions, the theoretical 

derivation of the equilibrium concentration of the embryos 

depending on size is given. It is shown in Appendix 2 of 

B(2011) that every function can be represented by the power 

law equation. The power is identical to the slope of the  

Fig. B-8. Reduced TTT-diagram  double log-plot of the power equation and is identical  

      based on data of Fig. B-7  to the activation volume parameter of the exact 

 kinetics equation. It is therefore possible to compare 

the different empirical rate equations to get information on the form of the activation volume 

parameter. In Appendix 3, based on diffusion tests, the theoretical explanation is given of the 

different empirical equations by their different activation volume parameters, based on the 

derivation of the empirical power law equation in Appendix 2. Herewith the special form of 

the activation volume term of the driving force of nucleation is found as applied in Section 5. 

It is shown in Section 5, that the special expression of the activation volume of the basic rate 

equation explains the data and nucleation behavior as well for homogeneous as for 

heterogeneous nucleation. As discussed in Section 6, this rate equation shows the well-known 

increase of the rate at the increase of undercooling up to a maximum value and then a 

decrease of the rate at larger undercooling steps giving thus a theoretical equation and 
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explanation of the C-shape of the TTT-diagrams. Thus, it is shown that nucleation follows 

the reaction rate equation of structural change. For the common case of high internal stresses, 

e.g. due to quenching, the equation can be given in stresses, determinable from measurements 

of the rate behavior. It is important to know that the same applies for glass transition as 

shown in reference B(2010).   

 

Regarding glass-transition the following applies:  

Based on the deformation kinetics approach, the theoretical derivation is given of the 

empirical WLF-equation of the time–temperature equivalence in B(2010). The same is done 

for annealing at glass transition. The derivation provides a general theory for any loading 

history and replaces the inconsistent free volume model.  

In general is time dependent behavior explained by the equilibrium theory of deformation 

kinetics of B(1989a) and it never was necessary to apply the phenomenological relaxation 

time spectra. It is, on the contrary, easy to show B(2005) that the row expansion of the 

kinetics equation gives the Rouse spectrum and with a different cut off of the series, the 

Zimm spectrum, explaining the success of the use of spectra. It thus follows that the apparent 

need of linear viscoelastic spectra indicates non-linear behavior according to deformation 

kinetics. This last, exact approach, also applies for glass transition and annealing and there is 

no need of the phenomenological free volume model and Doolittle viscosity equation giving 

no explanation of the WLF-equation. The explanation follows from the theoretical derivation 

based on the, in Appendix A of B(2010) discussed, deformation kinetics of structural changes 

and from the constitutive equations of Appendix B. Annealing had to be discussed because 

the determination of the constants of the WLF-equation and of the glass-transition 

temperature is based on annealing experiments. Two connected cases are regarded, one with 

the Arrhenius shift and the other with a dominating WLF-shift.  

As known, viscosity curves, compliance curves, etc. measured at different temperatures may 

show about the same shape independent of the temperature and can be shifted along a 

logarithmic time or frequency axis to form one curve, predicting the behavior after long times 

at the lower temperature. Near glass-transition temperature, the horizontal shift factor ln( )Ta  

of the displacement of the curves, by temperature 

difference, along the log-time axis follows WLF-equation, 

eq.(4) of B(2010), applying the best for amorphous uncross-

linked polymers and other super-cooled non-crystallizing 

liquids. According to the classical model, this shift factor is 

assumed to be equal to the differences in relaxation times on 

logarithmic scale: 1 2ln( ) ln( ) ln( )T r ra t t  ,  

where 1rt  and 2rt  are the relaxation times at temperatures 1T  

and 2T  (see Fig. B-9). It further is assumed for the viscosity  

Fig. B-9. Temperature shift    that: 1 2 1 2ln( ) ln( ) ln( ) ln( )r rt t    .  

 With the Doolittle viscosity equation:  

 ln( ) ln( ) / ' / ' /f f fA B v v v A Bv v A B f        ,  

in which /ff v v  is the free volume fraction of volume v, the shift factor Ta  becomes: 

1 2 1 2ln( ) ln( ) ln( ) ln( ) ln( )T r ra t t       ,  
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where:  2 1 2 1f f T T    and   is the difference of the thermal expansion coefficients 

below and above the glass-transition temperature gT , determining the increase in free 

volume. 

Because this free volume model is a phenomenological model, there inherently are many 

inconsistencies. For instance, the necessity of volume changes without shear, (because of the 

independency of the molecular weight), while the WLF-equation also applies for shear. The 

value of   is an order too low for e.g. inorganic glasses, and still more for e.g. cellulose 

derivatives and orders to low for wood material, showing that the amount of free volume 

increase is not a causative parameter, but an accompanying phenomenon. The equation: 

1 2 1 2ln( ) ln( ) ln( ) ln( )r rt t     can not be true for a horizontal shift of the ln( ) -plot along 

the frequency axis as shown in Fig. B-9, because when 1ln( )  at 1T , is equal to 2ln( )  at 2T , 

then also 1 2r rt t , which states that there is no shifted position. Also the Doolittle equation, 

ln( ) ' / ' /fA Bv v A B f     , can not be true for a horizontal shift, because when: 

1 2ln( ) ln( )  , then also 1 2f f , thus constant independent of temperature.   

The following can be concluded regarding glass transition:  

- Not the volume effect, but the structural change equation of the equilibrium theory of 

molecular deformation kinetics, as derived in B(1989a), which is shown to explain all aspects 

of time dependent behavior of wood, is shown in B(2010) to also give the theoretical 

explanation of the empirical WLF-equation and of the volume change and of stress relaxation 

at annealing. 

– The form of the WLF-equation is explained by the properties of the activation volume 

parameters near transition, as given by Eq. (10) of B(2010).  

– It is shown by Eq. (17) that the WLF-shift is accompanied by the Arrhenius shift. The right 

WLF-shift has to be done on an by a factor exp(H/kT) reduced curve. 

– The constant value of rkg/kNg, or the proportionality of Ng (the concentration of sites) with 

the initial applied stress r, is a similar property of the activation volume as applies for glasses, 

wood, concrete and some metals B(1989a) which explains the time– stress equivalence. 

– The equations show that always high internal stresses are acting 

even at the end of stress relaxation, probably by the high molecular attraction forces in the 

voids. The decrease of stress then is due to a decrease of restrained voids.  

– The WLF-shift is due to site multiplication with temperature increase near Tg. 

– The WLF temperature shift applies, when the increase of specific activation volume k/kg is 

twice the increase of specific free volume N/Ng with temperature. 

– The Arrhenius temperature shift in the transition zone applies when the increase of the 

specific activation volume with temperature is proportional to the increase of the specific free 

volume. 
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